866 research outputs found

    Structure-preserving mesh coupling based on the Buffa-Christiansen complex

    Full text link
    The state of the art for mesh coupling at nonconforming interfaces is presented and reviewed. Mesh coupling is frequently applied to the modeling and simulation of motion in electromagnetic actuators and machines. The paper exploits Whitney elements to present the main ideas. Both interpolation- and projection-based methods are considered. In addition to accuracy and efficiency, we emphasize the question whether the schemes preserve the structure of the de Rham complex, which underlies Maxwell's equations. As a new contribution, a structure-preserving projection method is presented, in which Lagrange multiplier spaces are chosen from the Buffa-Christiansen complex. Its performance is compared with a straightforward interpolation based on Whitney and de Rham maps, and with Galerkin projection.Comment: 17 pages, 7 figures. Some figures are omitted due to a restricted copyright. Full paper to appear in Mathematics of Computatio

    Renormalization of a Lorentz invariant doubled worldsheet theory

    Get PDF
    Manifestly T-duality covariant worldsheet string models can be constructed by doubling the coordinate fields. We describe the underlying gauge symmetry of a recently proposed Lorentz invariant doubled worldsheet theory that makes half of the worldsheet degrees of freedom redundant. By shifting the Lagrange multiplier, that enforces the gauge fixing condition, the worldsheet action can be cast into various guises. We investigate the renormalization of this theory using a non-linear background / quantum split by employing a normal coordinate expansion adapted to the gauge-fixed theory. The propagator of the doubled coordinates contains a projection operator encoding that half of them do not propagate. We determine the doubled target space equations of motion by requiring one-loop Weyl invariance. Some of them are generalizations of the conventional sigma model beta-functions, while others seem to be novel to the doubled theory: In particular, a dilaton equation seems related to the strong constraint of double field theory. However, the other target space field equations are not identical to those of double field theory.Comment: 32 pages; v2: motivation and discussion expanded, references adde
    • …
    corecore